亚博取款高效快速

智能感知与信息处理研究所

一、研究所简介

智能感知与信息处理研究所由副教授、青年博士7人组成,团队负责人为高永彬。近年来,团队成员先后获得国家自然科学基金、上海市科委重点项目子课题、十三五装备预研基金项目、上海市自然科学基金面上项目以及中国商飞、振华重工等大型国企的委托项目。致力于智慧医疗、三维视觉等人工智能领域的研究。

二、团队负责人

团队负责人高永彬是上海市晨光学者,硕士生导师,自2013年起获得国家基金委公派资助,于韩国全北国立大学获得博士学位。发表包括Information Sciences, Pattern Recognition Letters, ICME等知名期刊/会议论文40余篇,其中SCI检索17篇,EI检索5篇。2017年回国后,加入上海工程技术大学亚博取款高效快速,主持国家青年基金项目/省部级项目4项,并作为主要技术负责人参与国家基金委重点项目,上海市科委重点项目。同时,积极推进产学研合作,上海振华重工集团、上海掌腾智能科技有限公司(技术顾问)、上海悠络客电子科技股份有限公司、上海中山医院、上海长征医院等进行深入的产学研合作,主要负责5项横向课题,研究领域包括:无人机定位导航、SLAM技术、三维视觉分析、人脸识别、掌静脉识别、车型识别、多目标识别与跟踪、行为识别、医疗影像辅助诊断(CTA分析冠心病与胃癌)。

三、团队主要成员

1.万卫兵,上海交通大学工学博士,2011.7-2012.10,美国佐治亚医科大学脑及行为研究所博士后;主要从事自然场景的多源图像数据的配准研究工作,自然场景的三维结构提取和统计分析。2010.7-2011.7,美国密苏里大学-哥伦比亚分校计算机系博士后;主要从事序列图像及视频图像的图像配准和三维重建工作。2019年加入上海工程技术大学。

作为负责人和主要研究人员主持和承担过多项重要项目的研究工作,包括十三五装备预研重点项目和领域基金项目。在国际著名期刊International Journal of Social Robotics、Journal of Vision、BMC Neuroscience、Measurement Science & Technology、Journal of Electronic Imaging、Artificial Organs等和国内期刊发表论文30多篇,其中SCI国外期刊11,影响因子3.0以上5篇。完成专著1部,发明专利2项,软件著作权2项。国际SCI期刊SPIE Journals、Measurement Science and Technology、IET Computer Vision等审稿人,Vision Sciences Society(VSS)Organization for Computational Neurosciences (OCNS)国际会员。

2.张娟,副教授,硕士生导师。2012年毕业于上海大学,获工学博士学位,2014年上海大学信息与通信工程博士后流动站出站。曾参与国家高技术研究发展计划项目(863计划)《面向多行业IT资源库的建设及应用》,国家自然科学基金项目《面向物体级的视觉SLAM动态三维场景解析与重建》、《需求变更\系统演化环境下的特征化需求模型的代码综合方法》、《基于SXM模型的Web软件测试理论与方法》,国家火炬计划项目《面向领域的软件产品测评基准库建设与应用》,上海市科委地方院校能力建设项目《多源特征融合的主动式行车安全分析与预警平台》的研究工作。为研究生和本科生开设了《机器学习》、《数字图像处理》、《计算机图形学》、《数据库原理》、《软件测试》等课程。指导研究生获2018年全国多媒体大会去雾图像处理竞赛第一名,获一等奖。近五年研究方向为计算机视觉、机器学习等,主要的应用场景为恶劣天气街道图像恢复、车道线检测等。公开发表学术论文近30余篇,其中SCI收录10余篇。

3.黄勃,工学博士,讲师,硕士生导师。2014年毕业于武汉大学计算机亚博取款高效快速,获得工学博士学位。目前主持国家自然科学基金一项,主持委办级项目若干项,曾承担国家、省部级科研项目若干项。已公开发表学术论文20余篇,其中SCI、EI检索十余篇,获得湖北省科技进步奖一等奖一项,二等奖一项,获批专利、软件著作权若干项。目前为本科生开设《软件工程》、《微机原理及接口技术》、《汇编语言》、《多媒体技术》等课程。

        4.俞雷,中科院自动化所博士,于20077月华东师范大学获得计算机科学与技术系学士学位, 20157月中国科亚博取款高效快速大学获得计算机应用技术博士学位;20157月在大众点评网任职算法工程师,负责从事反爬虫流量安全,反刷单业务安全和UGC点评内容安全等策略相关工作。20176月起任职于上海工程技术大学,从事多媒体内容理解、计算机视觉与机器学习方面的研究工作。专业方面对图像语义理解,图像分类、网络图像分析和检索等领域有深入的了解和研究;熟悉数据挖掘、社会媒体分析、机器学习、模式识别相关理论与算法。

        5.张立军,讲师,上海交通大学博士,先后在上海电信研究院和中国科亚博取款高效快速上海高等研究院担任高级工程师,在包括IEEE Transaction on Broadcasting等在内的国内外期刊发表论文十余篇,目前研究方向为计算机视觉。

        6.杨孜茁,讲师,主要从事数据科学与大数据技术、Web信息管理系统方面的教学与科研工作。

四、主要论文及专利成果

  1. Yongbin Gao, Hyo Jong Lee, “Cross-Pose Face Recognition Based on Multiple Virtual Views and Alignment Error,” vol. 65, pp. 170-176, Nov. 2015,Pattern Recognition Letters. (SCI, IF: 2.81)

  2. Yongbin Gao, Hyo Jong Lee, “Local Tiled Deep Networks for Recognition of Vehicle Make and Model,” vol. 16, no. 2, pp. 1-13, Feb. 2016,Sensors. (SCI, IF: 3.03)

  3. Zhijun Fang (supervisor),Yongbin Gao, Naixue Xiong, Athanasios V. Vasilakos, Yuming Fang, “A general effective rate control system based on matching measurement and inter-quantizer,” vol. 346-347, pp. 351-368, 2016,Information Sciences. (SCI, IF: 4.832)

  4. Yongbin Gao, Hyo Jong Lee, “Learning warps based similarity for pose-unconstrained face recognition,”Multimedia tools and applications, vol. 77, no. 2, 2018. (SCI, IF: 2.101)

  5. Yongbin Gao, Hyo Jong Lee, “Pose-invariant features and Personalized Correspondence Learning for Face Recognition,”Neural Computing and Applications, vol. 31, no.1, pp. 607-616, 2019. (SCI, IF:4.664)

  6. Jingming Zhao,Juan Zhang, Zhi Li, Jenq-Neng Hwang,Yongbin Gao, and Zhijun Fang, “DD-CycleGAN: Unpaired image dehazing via Double-Discriminator Cycle-Consistent Generative Adversarial network,” Accepted byEngineering Applications of Artificial Intelligence (EAAI), December 2018. (SCI, IF: 2.819)

  7. Renyue Dai,Yongbin Gao*, Zhijun Fang, Xiaoyan Jiang, Anjie Wang, Juan Zhang, Cengsi Zhong, “Unsupervised learning of depth estimation based on attention model and global pose optimization,”Signal Processing:Image Communication, 2019. (SCI, IF:2.814)

  8. Anjie Wang#,Yongbin Gao#, Xiaoyan Jiang, Zhijun Fang*, Shanshe Wang, Siwei Ma, Jenq-Neng Hwang. “Unsupervised learning of depth and ego-motion with spatial-temporal geometric constraints,” accepted by IEEE International Conference on Multimedia and Expo (ICME), 2019. (CCF B类会议)

  9. Chen X, Zhu X. Y.,Wan W.B Yang Z.Y, (2013).Statistics of spatial-temporal concatenations of features at human fixations in action classification. Journal of Vision, 13:520; doi:10.1167/13.9.520. SCI影响因子 3.376.

  10. Wan W.B, Yang Z.Y, (2012). Statistics of Three-Dimensional Natural Scene Structure. Journal of Vision ,August 13, 12(9): 1203; doi:10.1167/12.9.1203,SCI影响因子 3.376.

  11. Wan W.B, Yang Z.Y, (2012). A Visual Code Book--Structured Probability Distributions in Natural Scenes. BMC Neuroscience, 13(Suppl 1):P9。 doi:10.1186/1471-2202-13-S1-P9.SCI影响因子 3.04.

  12. Po-Han Wu, Chih-Wei Huang, Jenq-Neng Hwang, Jae-Young Pyun,Juan Zhang. Visual Quality Driven Resource Allocation for Real-Time Surveillance Video Uplinking over OFDMA-based Wireless Networks.IEEE Transaction on Vehicular Technology, 2015.64(7): p. 3233 - 3246. WOS:000358239500036

  13. Lei Yu#, Jing Liu, Changsheng Xu*, Label localization by appearance guided graph inferring, 2013IEEE International Conference on Image Processing (ICIP), Melbourne, Australia, 2013.9.15-2013.9.18 (CCF推荐会议)

  14. Lei Yu#, Jing Liu, Changsheng Xu*, Label localization with weakly spatial constrained graph propagation, 2013IEEE International Conference on Multimedia and Expo (ICME), San Jose, USA, 2013.7.15-2013.7.19(CCF推荐会议)

  15. Lei Yu#, Jing Liu, Changsheng Xu*, Descriptive local feature groups for image classification, 2011IEEE International Conference on Image Processing (ICIP), Brussels, Belgium, 2011.9.11-2011.9.14(CCF推荐会议)

  16. Lijun Zhang, et al, Obtaining diversity gain for DTV by using MIMO structure in SFN, IEEE Transaction on Broadcasting, 2004.3

  17. Lijun Zhang, et al, A Layer-mixed FEC Scheme for Scalable Media Transmission over Mobile TV Services, IEEE Transaction on Broadcasting, 2017.6


四、主要项目成果

团队注重与各行业企业开展产学研合作,以IEEE+AI+为基本模式,广泛服务社会与产业需求,多项成果已得到成功应用。主要成果如下:

    1.非侵入式FFR测量技术---与上海市中山医院合作

目前针对血管堵塞诊断,仍旧完全依赖于医生的主观意识完成。临床上缺乏一种对血管狭窄度、堵塞程度等进行分析的辅助诊断工具。我们的作品应用冠状动脉血管堵塞辅助诊断技术,即将人工智能技术应用于辅助诊断诊疗中,让计算机学习专家医生的医疗知识,模拟医生的思维和诊断推理,从而给出可靠诊断和治疗方案,从而极大地降低医生的工作量。

    2.胃癌分期诊断研究项目---与上海市长征医院合作

中国是一个胃癌发病和死亡高发的国家。从发病率来看,仅次于肝癌,位居第二位。由于中国的人口基数非常大,目前胃癌发病总人数占全世界约47%,即将近一半的胃癌病人在中国。究其原因一是我国早期胃癌的检出率低,二是诊治流程的规范化程度低,三是胃癌手术操作的规范化程度尚未在基层医院建立。首诊医生对胃癌患者的处理,将直接影响患者的预后。决定医生制订治疗方案的最重要一环,就是医生对患者的胃癌术前分期判断,因为只要分期判断准确,结合NCCN指南和胃癌专家共识中国版,就可以按图索骥地给出合理的治疗方案。胃癌与淋巴结的大小与位置等特征是胃癌分期重要的参考。基于深度学习的人工智能技术在胃癌诊断中的应用目的在于构建和验证一个用于早期胃癌自动识别的深度学习模型,提高早期胃癌的识别和诊断水平。

3.基于三维眼震检测的眩晕智能诊断系统---与复旦大学附属眼耳鼻喉科医院合作及上海志听医疗科技有限公司

在前庭功能检查器械领域,主流前庭功能检查技术皆依托检查不同条件下眼球的移动情况进而推断受试者的前庭功能,其主要检查功能为前庭眼反射,也是外周前庭在保持平衡过程中最为重要的功能。代表的检查有视频眼动电图、甩头试验、前庭自旋转检查以及良性阵发性位置性眩晕(BPPV,俗称耳石症)的动态位置试验等,其中最为特殊的是BPPV的检查:在早期无器械辅助情况下,医生在床旁进行动态位置试验,将受试者身体和头部摆至检查或治疗的体位,通过肉眼观察受试者眼球运动情况判断病情。手法检查与复位容易受诸多因素制约影响检查或治疗效果;例如患者睁眼看见周围物体后眩晕感会更加强烈,实践中常常因患者难以睁眼不能观察到患者的眼球运动,此外,许多患有颈椎疾病或腰椎疾病患者无法配合一些幅度大的检查或治疗动作,使诊疗无法顺利进行。

本项目基于大数据的深度学习算法提取足够的BPPV眼震特征,对主要几种类型(水平半规管管石型BPPV